Chapter 3:Pair of Linear Equations in Two Variables
Chapter 5: Arithmetic Progression
Chapter 8: Introduction to Trigonometry
Chapter 9:Some Applications of Trigonometry
Chapter 12:Area Related to Circles
Arithmetic Progression
(i) 2, 7, 12 ,…., to 10 terms.
(ii) − 37, − 33, − 29 ,…, to 12 terms
(iii) 0.6, 1.7, 2.8 ,…….., to 100 terms
(iv) 1/15, 1/12, 1/10, …… , to 11 terms
(i) Given, 2, 7, 12 ,…, to 10 terms
For this A.P.,
a = 2
d = a2 − a1 = 7−2 = 5
n = 10
sum of nth term in AP series is,
Sn = n/2 [2a +(n-1)d]
S10 = 10/2 [2(2)+(10 -1)×5]
= 5[4+(9)×(5)]
= 5 × 49 = 245
(ii) Given, −37, −33, −29 ,…, to 12 terms
first term, a = −37
And common difference, d = a2− a1
d= (−33)−(−37)
= − 33 + 37 = 4
n = 12
sum of nth term in AP series is,
Sn = n/2 [2a+(n-1)d]
S12 = 12/2 [2(-37)+(12-1)×4]
= 6[-74+11×4]
= 6[-74+44]
= 6(-30) = -180
(iii) Given, 0.6, 1.7, 2.8 ,…, to 100 terms
first term, a = 0.6
d = a2 − a1 = 1.7 − 0.6 = 1.1
n = 100
sum of nth term in AP series is,
Sn = n/2[2a +(n-1)d]
S12 = 50/2 [1.2+(99)×1.1]
= 50[1.2+108.9]
= 50[110.1]
= 5505
(iv) Given, 1/15, 1/12, 1/10, …… , to 11 terms
For this A.P.,
a = 1/5
d = a2 –a1 = (1/12)-(1/5) = 1/60
n = 11
sum of nth term in AP series is,
Sn = n/2 [2a + (n – 1) d] = 11/2
= 33/20
a = 7
an = 84
d =an = a(n-1)d
84 = 7+(n – 1) x22 = n−1
n = 23
sum of n term is;
Sn = n/2 (a + l) , l = 84
Sn = 23/2 (7+84)
Sn = (23×91/2) = 2093/2
= 1046.5(ii) Given, 34 + 32 + 30 + ……….. + 10
first term, a = 34
d = a2−a1 = 32−34 = −2
nth term, an= 10
10 be the nth term of this A.P.
an= a +(n−1)d
10 = 34+(n−1)(−2)
−24 = (n −1)(−2)
12 = n −1
n = 13
sum of n terms is;
Sn = n/2 (a +l) , l = 10
= 13/2 (34 + 10)
= (13×44/2) = 13 × 22
= 286
(iii)Given, (−5) + (−8) + (−11) + ………… + (−230)
First term, a = −5
nth term, an= −230
Common difference, d = a2−a1 = (−8)−(−5)
⇒d = − 8+5 = −3
−230 be the nth term of this A.P
an= a+(n−1)d
−230 = − 5+(n−1)(−3)
−225 = (n−1)(−3)
(n−1) = 75
n = 76
And, Sum of n term,
Sn = n/2 (a + l)
= 76/2 [(-5) + (-230)]
= 38(-235)
= -8930
(i) a = 5, d = 3, an = 50
As we know that nth term in an AP,
an = a +(n −1)d,
we get,
⇒ 50 = 5+(n -1)×3
⇒ 3(n -1) = 45
⇒ n -1 = 15
⇒ n = 16
Now, sum of n terms,
Sn = n/2 (a +an)
Sn = 16/2 (5 + 50) = 440
(ii) a = 7, a13 = 35
As we know,that nth term in an AP,
an = a+(n−1)d,
we get,
⇒ 35 = 7+(13-1)d
⇒ 12d = 28
⇒ d = 28/12 = 2.33
Now, Sn = n/2 (a+an)
S13 = 13/2 (7+35) = 273
(iii)Given that, a12 = 37, d = 3
nth term in an AP,
an = a+(n −1)d,
⇒ a12 = a+(12−1)3
⇒ 37 = a+33
⇒ a = 4
Now, sum of nth term,
Sn = n/2 (a+an)
Sn = 12/2 (4+37)
= 246
(iv) Given that, a3 = 15, S10 = 125
nth term in an AP,
an = a +(n−1)d,
a3 = a+(3−1)d
15 = a+2d ………………………….. (i)
Sum of the nth term,
Sn = n/2 [2a+(n-1)d]
S10 = 10/2 [2a+(10-1)d]
125 = 5(2a+9d)
25 = 2a+9d ……………………….. (ii)
On multiplying equation (i) by (ii), we get;
30 = 2a+4d ………………………………. (iii)
By subtracting equation (iii) from (ii), we get,
−5 = 5d
d = −1
From equation (i),
15 = a+2(−1)
15 = a−2
a = 17 = First term
a10 = a+(10−1)d
a10 = 17+(9)(−1)
a10 = 17−9 = 8
(v) Given that, d = 5, S9 = 75
As, sum of n terms in AP is,
Sn = n/2 [2a +(n -1)d]
Therefore, the sum of first nine terms are;
S9 = 9/2 [2a +(9-1)5]
25 = 3(a+20)
25 = 3a+60
3a = 25−60
a = -35/3
nth term AP
an = a+(n−1)d
a9 = a+(9−1)(5)
= -35/3+8(5)
= -35/3+40
= (35+120/3) = 85/3
(vi) Given that, a = 2, d = 8, Sn = 90
As, sum of n terms in an AP is,
Sn = n/2 [2a +(n -1)d]
90 = n/2 [2a +(n -1)d]
⇒ 180 = n(4+8n -8) = n(8n-4) = 8n2-4n
⇒ 8n2-4n –180 = 0
⇒ 2n2–n-45 = 0
⇒ 2n2-10n+9n-45 = 0
⇒ 2n(n -5)+9(n -5) = 0
⇒ (n-5)(2n+9) = 0
So, n = 5
∴ a5 = 8+5×4 = 34
(vii) Given that, a = 8, an = 62, Sn = 210
As, sum of n terms in an AP is,
Sn = n/2 (a + an)
210 = n/2 (8 +62)
⇒ 35n = 210
⇒ n = 210/35 = 6
Now, 62 = 8+5d
⇒ 5d = 62-8 = 54
⇒ d = 54/5 = 10.8
(viii) Given that, nth term, an = 4, d = 2, Sn = −14.
As we know,that the nth term in an AP,
an = a+(n −1)d,
4 = a+(n −1)2
4 = a+2n−2
a+2n = 6
a = 6 − 2n …………………………………………. (i)
As we know, the sum of n terms is;
Sn = n/2 (a+an)
-14 = n/2 (a+4)
−28 = n (a+4)
−28 = n (6 −2n +4) {From equation (i)}
−28 = n (− 2n +10)
−28 = − 2n2+10n
2n2 −10n − 28 = 0
n2 −5n −14 = 0
n2 −7n+2n −14 = 0
n (n−7)+2(n −7) = 0
(n −7)(n +2) = 0
Either n − 7 = 0 or n + 2 = 0
n = 7 or n = −2
However, n can neither be negative
Therefore, n = 7
From equation (i), we get
a = 6−2n
a = 6−2(7)
= 6−14
= −8
(ix) Given that, first term, a = 3,
n = 8
Sn = 192
As we know,
Sn = n/2 [2a+(n -1)d]
192 = 8/2 [2×3+(8 -1)d]
192 = 4[6 +7d]
48 = 6+7d
42 = 7d
d = 6
(x) Given that, l = 28,S = 144 and there are total of 9 terms.
Sum of n terms
Sn = n/2 (a + l)
144 = 9/2(a+28)
(16)×(2) = a+28
32 = a+28
a = 4
For A.P.,
First term, a = 9
Common difference, d = a2−a1 = 17−9 = 8
As, the sum of n terms, is;
Sn = n/2 [2a+(n -1)d]
636 = n/2 [2×a+(8-1)×8]
636 = n/2 [18+(n-1)×8]
636 = n [9 +4n −4]
636 = n (4n +5)
4n2 +5n −636 = 0
4n2 +53n −48n −636 = 0
n (4n + 53)−12 (4n + 53) = 0
(4n +53)(n −12) = 0
Either 4n+53 = 0 or n−12 = 0
n = (-53/4) or n = 12
n cannot be negative therefore, n = 12 only.
Given that,
first term, a = 5
last term, l = 45
Sum of the AP, Sn = 400
As we know
Sn = n/2 (a+l)
400 = n/2(5+45)
400 = n/2(50)
Number of terms, n =16
l = a+(n −1)d
45 = 5 +(16 −1)d
40 = 15d
Common difference, d = 40/15 = 8/3
Given that,
First term, a = 17
Last term, l = 350
Common difference, d = 9
l = a+(n −1)d
350 = 17+(n −1)9
333 = (n−1)9
(n−1) = 37
n = 38
Sn = n/2 (a+l)
S38 = 13/2 (17+350)
= 19×367
= 6973
Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.
Given,
Common difference, d = 7
22nd term, a22 = 149
Sum of first 22 term, S22 = ?
By nth term,
an = a+(n−1)d
a22 = a+(22−1)d
149 = a+21×7
149 = a+147
a = 2 = First term
Sum of n terms,
Sn = n/2(a+an)
S22 = 22/2 (2+149)
= 11×151
= 1661
Given that,
Second term, a2 = 14
Third term, a3 = 18
Common difference, d = a3−a2 = 18−14 = 4
a2 = a+d
14 = a+4
a = 10
Sum of n terms
Sn = n/2 [2a + (n – 1)d]
S51 = 51/2 [2×10 (51-1) 4]
= 51/2 [2+(20)×4]
= 51 × 220/2
= 51 × 110
= 5610
Given that,
S7 = 49
S17 = 289
Sum of nth term;
Sn = n/2 [2a + (n – 1)d]
Therefore,
S7= 7/2 [2a +(n -1)d]
S7 = 7/2 [2a + (7 -1)d]
49 = 7/2 [2a +16d]
7 = (a+3d)
a + 3d = 7 …………………………………. (i)
S17 = 17/2 [2a+(17-1)d]
289 = 17/2 (2a +16d)
17 = (a+8d)
a +8d = 17 ………………………………. (ii)
Subtracting equation (i) from equation (ii),
5d = 10
d = 2
From equation (i), we can write it as;
a+3(2) = 7
a+ 6 = 7
a = 1
Hence,
Sn = n/2[2a+(n-1)d]
= n/2[2(1)+(n – 1)×2]
= n/2(2+2n-2)
= n/2(2n)
= n2
(i) an = 3+4n
(ii) an = 9−5n
Also find the sum of the first 15 terms in each case.
(i) an = 3+4n
a1 = 3+4(1) = 7
a2 = 3+4(2) = 3+8 = 11
a3 = 3+4(3) = 3+12 = 15
a4 = 3+4(4) = 3+16 = 19
the common difference between the terms
a2 − a1 = 11−7 = 4
a3 − a2 = 15−11 = 4
a4 − a3 = 19−15 = 4
Now, the sum of nth term is;
Sn = n/2[2a+(n -1)d]
S15 = 15/2[2(7)+(15-1)×4]
= 15/2[(14)+56]
= 15/2(70)
= 15×35
= 525
(ii) an = 9−5n
a1 = 9−5×1 = 9−5 = 4
a2 = 9−5×2 = 9−10 = −1
a3 = 9−5×3 = 9−15 = −6
a4 = 9−5×4 = 9−20 = −11
the common difference between the terms
a2 − a1 = −1−4 = −5
a3 − a2 = −6−(−1) = −5
a4 − a3 = −11−(−6) = −5
Now, the sum of nth term is;
Sn = n/2 [2a +(n-1)d]
S15 = 15/2[2(4) +(15 -1)(-5)]
= 15/2[8 +14(-5)]
= 15/2(8-70)
= 15/2(-62)
= 15(-31)
= -465
Given
Sn = 4n−n2
First term, a = S1 = 4(1) − (1)2 = 4−1 = 3
Sum of first two terms = S2= 4(2)−(2)2 = 8−4 = 4
Second term, a2 = S2 − S1 = 4−3 = 1
Common difference, d = a2−a = 1−3 = −2
Nth term, an = a+(n−1)d
= 3+(n −1)(−2)
= 3−2n +2
= 5−2n
Therefore, a3 = 5−2(3) = 5-6 = −1
a10 = 5−2(10) = 5−20 = −15
Hence, the sum of first two terms is 4. The second term is 1.
The 3rd, the 10th, and the nth terms are −1, −15, and 5 − 2n respectively.
The positive integers that are divisible by 6 are 6, 12, 18, 24 ….
a = 6
d = 6
S40 = ?
By the formula of sum of n terms, we know,
Sn = n/2 [2a +(n – 1)d]
Therefore, n = 40, we get,
S40 = 40/2 [2(6)+(40-1)6]
= 20[12+(39)(6)]
= 20(12+234)
= 20×246
= 4920
The multiples of 8 are 8, 16, 24, 32…
Therefore, a = 8
d = 8
S15 = ?
sum of nth term, we know,
Sn = n/2 [2a+(n-1)d]
S15 = 15/2 [2(8) + (15-1)8]
= 15/2[6 +(14)(8)]
= 15/2[16 +112]
= 15(128)/2
= 15 × 64
= 960
The odd numbers between 0 and 50 are 1, 3, 5, 7, 9 … 49.
Hence,
a = 1
Common difference, d = 2
Last term, l = 49
for the last term, we know,
l = a+(n−1) d
49 = 1+(n−1)2
48 = 2(n − 1)
n − 1 = 24
n = 25 = Number of terms
sum of nth term, we know,
Sn = n/2(a +l)
S25 = 25/2 (1+49)
= 25(50)/2
=(25)(25)
= 625
Since the penalties for each succeeding day by Rs 50 more than the preceding day Therefore penalities form of A.P. having first term as 200 and common difference as 50.
Therefore, a = 200 and d = 50
Penalty that has to be paid if contractor has delayed the work by 30 days = S30
sum of nth term,
Sn = n/2[2a+(n -1)d]
Therefore,
S30= 30/2[2(200)+(30 – 1)50]
= 15[400+1450]
= 15(1850)
= 27750
Therefore, the contractor has to pay Rs 27750 as penalty.
Let the cost of 1st prize be Rs. P.
Cost of 2nd prize = Rs. P − 20
And cost of 3rd prize = Rs. P − 40
We can see that the cost of these prizes are in the form of A.P..
Thus, a = P and d = −20
Given that, S7 = 700
By the formula of sum of nth term, we know,
Sn = n/2 [2a + (n – 1)d]
7/2 [2a + (7 – 1)d] = 700
a + 3(−20) = 100
a −60 = 100
a = 160
hence, the value of each of the prizes was Rs 160, Rs 140, Rs 120, Rs 100, Rs 80, Rs 60, and Rs 40.
According to question the number of tree that each section planted
1, 2, 3, 4, 5………………..12
First term, a = 1
Common difference, d = 2−1 = 1
Sn = n/2 [2a +(n-1)d]
S12 = 12/2 [2(1)+(12-1)(1)]
= 6(2+11)
= 6(13)
= 78
Hence , number of trees planted by 1 section of the classes = 78
Number of trees planted by 3 sections of the classes = 3×78 = 234
Therefore, 234 trees will be planted by the students.
soooonn
We know,
Perimeter of a semi-circle = πr
So,
P1 = π(0.5) = π/2 cm
P2 = π(1) = π cm
P3 = π(1.5) = 3π/2 cm
Where, P1, P2, P3 are the lengths of the semi-circles.
π/2, π, 3π/2, 2π, ….
P1 = π/2 cm
P2 = π cm
Common difference, d = P2 – P1 = π – π/2 = π/2
First term = P1= a = π/2 cm
the sum of n term we know,
Sn = n/2 [2a + (n – 1)d]
Therefor, Sum of the length of 13 consecutive circles is;
S13 = 13/2 [2(π/2) + (13 – 1)π/2]
= 13/2 [π + 6π]
=13/2 (7π)
= 13/2 × 7 × 22/7
= 143 cm
the numbers of logs in rows are in the form of an A.P.20, 19, 18…
First term, a = 20 and common difference, d = a2−a1 = 19−20 = −1
Let a total of 200 logs be placed in n rows.
Thus, Sn = 200
By the sum of nth term formula,
Sn = n/2 [2a +(n -1)d]
S12 = 12/2 [2(20)+(n -1)(-1)]
400 = n (40−n+1)
400 = n (41-n)
400 = 41n−n2
n2−41n + 400 = 0
n2−16n−25n+400 = 0
n(n −16)−25(n −16) = 0
(n −16)(n −25) = 0
Either (n −16) = 0 or n−25 = 0
n = 16 or n = 25
By the nth term formula,
an = a+(n−1)d
a16 = 20+(16−1)(−1)
a16 = 20−15
a16 = 5
Similarly, the 25th term could be written as;
a25 = 20+(25−1)(−1)
a25 = 20−24
= −4
It can be seen, the number of logs in 16th row is 5 .
Therefore, 200 logs can be placed in 16 rows and the number of logs in the 16th row is 5.
the patern of log show space saving creativity reasoning and balance
A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
[Hint: to pick up the first potato and the second potato, the total distance (in metres) run by a competitor is 2×5+2×(5+3)]
According to question the distance run by competitor are 2 x 5, 2 x(5 + 3), 2 x(5 + 3 + 3), 2 x(5 + 3 + 3 + 3)
10 , 16 ,22 ,28.....
Hence, the first term, a = 10 and d = 16−10 = 6
S10 =?
sum of n terms, we know,
S10 = 12/2 [2(20)+(n -1)(-1)]
= 5[20+54]
= 5(74)
= 370
Therefore, the competitor will run a total distance of 370 m.