Chapter 3:Pair of Linear Equations in Two Variables
Chapter 5: Arithmetic Progression
Chapter 8: Introduction to Trigonometry
Chapter 9:Some Applications of Trigonometry
Chapter 12:Area Related to Circles
Introduction to Trigonometry
(i) sin 18°/cos 72°
(ii) tan 26°/cot 64°
(iii) cos 48° – sin 42°
(iv) cosec 31° – sec 59°
(i) sin 18°/cos 72°
We know that,sin (90° – A)= cos A.
= sin (90° – 18°) /cos 72°
= cos 72° /cos 72° = 1
(ii) tan 26°/cot 64°
We know that tan (90° – A) = cot A
= tan (90° – 36°)/cot 64°
= cot 64°/cot 64° = 1
(iii) cos 48° – sin 42°
We know that cos (90° – A)= sin A.
= cos (90° – 42°) – sin 42°
= sin 42° – sin 42° = 0
(iv) cosec 31° – sec 59°
We know that,cosec (90° – 59°)= sec A
= cosec (90° – 59°) – sec 59°
= sec 59° – sec 59° = 0
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
(i) tan 48° tan 23° tan 42° tan 67°
We know that, tan 48° = tan (90° – 42°) = cot 42° , tan 23° = tan (90° – 67°) = cot 67°
= tan (90° – 42°) tan (90° – 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1
(ii) cos 38° cos 52° – sin 38° sin 52°
We know that,
cos 38° = cos (90° – 52°) = sin 52°
cos 52°= cos (90°-38°) = sin 38°
= cos (90° – 52°) cos (90°-38°) – sin 38° sin 52°
= sin 52° sin 38° – sin 38° sin 52° = 0
tan 2A = cot (A- 18°)
We know that tan 2A = cot (90° – 2A)
⇒ cot (90° – 2A) = cot (A -18°)
On compare
⇒ 90° – 2A = A- 18° ⇒ 108° = 3A
A = 108° / 3
the value of A = 36°
tan A = cot B
We know that cot B = tan (90° – B)
tan A = tan (90° – B)
A = 90° – B
A + B = 90°
Hence Proved.
sec 4A = cosec (A – 20°)
We know that sec 4A = cosec (90° – 4A)
cosec (90° – 4A) = cosec (A – 20°)
Now, On compare
90° – 4A= A- 20°
110° = 5A
A = 110°/ 5 = 22°
Therefore, the value of A = 22°
sin (B+C/2) = cos A/2
Solution:
We know that sum of all the interior angles of a triangle is equal to 180°
A + B + C = 180° ….(1)
⇒ B + C = 180° – A
On dividing both side by 2
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
Now, multiply both sides by sin functions, we get
⇒ sin (B+C)/2 = sin (90°-A/2)
Since sin (90°-A/2) = = cos A/2
sin (B+C)/2 = cos A/2
Hence proved.
Given:
sin 67° + cos 75°
sin 67° = sin (90° – 23°)
cos 75° = cos (90° – 15°)
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°
Therefore, sin 67° + cos 75° is also expressed as cos 23° + sin 15°